营销 导航

住宅结构设计之深梁

编辑:物业经理人2018-12-15

  住宅结构设计之深梁

  一般指梁的跨度与高度之比L/h≤2的简支梁和L/h≤2.5的连续梁,且适用于本身直接承受竖向荷载为主的深梁(剪力墙结构的连系梁虽然尺寸接近深梁,但其支座条件不同,梁的剪切变形较大,故不在本条之列)。深梁因其高度与跨度接近,受力性能与一般梁有较大差异,在荷载作用下,梁的正截面应变不符合平截面假定。

  为避免深梁出平面失稳,规范对梁截面高宽比(h/b)或跨宽比(L↓0/h)作了限制,并要求简支深梁在顶部、连续深梁在顶部和底部尽可能与其它水平刚度较大的构件(如楼盖)相连接。简支深梁的内力计算与浅梁相同。但连续深梁的弯矩及剪力与一般连续梁不同,其跨中正弯矩比一般连续梁偏大,支座负弯矩则偏小,且随跨高比及跨数的不同而变化。工程设计中,对连续深梁内力按弹性力学方法计算,暂不考虑塑性内力重分布。

  试验表明,简支深梁在斜裂缝出现后,梁内即发生明显的内力重分布,形成以纵向受拉钢筋为拉杆、斜裂缝上部混凝土为拱肋的拉杆拱受力体系。深梁的受剪承载力主要取决于截面尺寸、混凝土强度等级和剪跨比,其次为支承长度,分布钢筋,尤其竖向分布筋作用较小。

  深梁支座的支承面和集中荷载的加荷点都是高应力区,易发生局压破坏,应进行局压承载力计算。深梁是较复杂的构件,应遵守规范有关要求。

采编:www.pmceo.cOm

篇2:住宅结构设计之砌体结构

  住宅结构设计之砌体结构

  以砌体为主制作的结构称为砌体结构。它包括砖结构、石结构和其它材料的砌块结构。分为无筋砌体结构和配筋砌体结构。砌体结构在我国应用很广泛,这是因为它可以就地取材,具有很好的耐久性及较好的化学稳定性和大气稳定性,有较好的保温隔热性能。

  较钢筋混凝土结构节约水泥和钢材,砌筑时不需模板及特殊的技术设备,可节约木材。砌体结构的缺点是自重大、体积大,砌筑工作繁重。由于砖、石、砌块和砂浆间粘结力较弱,因此无筋砌体的抗拉、抗弯及抗剪强度都很快。

  由于其组成的基本材料和连接方式,决定了它的脆性性质,从而使其遭受地震时破坏较重,抗震性能很差,因此对多层砌体结构抗震设计需要采用构造柱、圈梁及其它拉结等构造措施以提高其延性和抗倒塌能力。此外,砖砌体所用粘土砖用量很大,占用农田土地过多,因此把实心砖改成空心砖,特别发展高孔洞率、高强度、大块的空心砖以节约材料,以及利用工业废料,如粉煤灰、煤渣或者混凝土制成空心砖块代替红砖等都是今后砌体结构的方向。

篇3:住宅结构设计之木结构

  住宅结构设计之木结构

  是单纯由木材或主要由木材承受荷载的结构。这种结构因为是由天然材料所组成,受着材料本身条件的限制,因而木结构多用在民用和中小型工业厂房的屋盖中。木屋盖结构包括木屋架、支撑系统、吊顶、挂瓦条及屋面板等。木材易于取材,加工方便,质轻且强。

  缺点是各向异性,有木节、裂纹等天然缺陷,易腐易蛀、易燃、易裂和翘曲。木屋架适用于跨度不超过15米,钢木屋架适用跨度不超过18米,室内空气相对湿度不超过70%,室内温度不超过50℃,吊车起重量不超过5↑t,悬挂吊车不超过1↑t的工业与民用建筑。钢木屋架采用钢下弦和钢拉杆,受力合理,安全可靠。

  木屋盖还可采用胶合梁作为承重构件,它是用胶将木板胶合而成,外形美观,受力合理,是一种有前途的结构。前苏联还研究使用过板肖梁、多种型式的空间结构如网状筒拱等。

  由于木材资源的限制及木材本身的缺点,近年来在大量房屋建筑中,木屋盖的应用较少,一般被钢筋混凝土结构及钢结构所代替。

篇4:住宅结构设计之结构

  住宅结构设计之结构

  钢结构 以钢材为主制作的结构,是主要的建筑结构类型之一。钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。其缺点是耐火性和耐腐性较差。主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和飞机库等大跨结构、高层和超高层建筑等。钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。

  轻型钢结构 系指由圆钢或小角钢(L45×4或L56×36×4)组成的钢结构(不采用圆钢,有个别次要杆件采用小角钢的仍属普通钢结构)。轻型钢结构主要用于跨度L≤18m、吊车起重量Q≤5t的无高温、高湿和侵蚀环境的厂房以及一些采用轻型屋面材料(石棉瓦、瓦楞铁、压型板或其它轻质材料)的不重要的或临时建筑的屋盖结构中。柱子和吊车梁不宜采用轻型钢结构。

  薄壁型钢结构 是采用1.5~5毫米的薄钢板或带钢冷弯加工成各种截面的型钢所构成的结构,其待点为:1.用钢量一般较普通热轧钢结构节省25%左右,有时还可以做到比同等条件下的钢筋混凝土结构(如大型屋面板)的用钢量少。2.结构重量轻,运输安装方便,可降低结构及基础的造价。3.同截面面积相同的热轧型钢相比,薄壁型钢回转半径要大50%~60%,惯性矩和截面抵抗矩也大为加大,因而更能充分地利用材料的力学物理性能,增加了结构的刚度和稳定性。4.成型灵活性大,可根据不同需要设计出最佳的截面形状。薄壁型钢结构的缺点是其刚度和稳定性较差,防腐要求较严,维护费用较高。此种结构一般用于民用建筑和跨度不大、屋面荷载较小、设备较轻的工业厂房。除用做承重结构构件外,也可用于楼、屋面板、幕墙结构等。使用时构件均需彻底除锈和涂刷防腐性能良好的涂料。

  组合结构 同一截面或各杆件由两种或两种以上材料制作的结构称组合结构。1.钢与混凝土组合结构:用型钢或钢板焊(或冷压)成钢截面,再在其四周或内部浇灌混凝土,使混凝土与型钢形成整体共同受力,通称钢与混凝土组合结构。国内外常用的组合结构有:(1)压型钢板与混凝土组合楼板;(2)钢与混凝土组合梁;(3)型钢混凝土结构(也叫劲性混凝土结构);(4)钢管混凝土结构;(5)外包钢混凝土结构等五大类。钢管混凝土结构在轴向压力下,混凝土受到周围钢管的约束,形成三向压力,抗压强度得到较大提高,故钢管混凝土被广泛地应用到高轴压力的构件中。外包钢结构在前苏联研究最早,应用最广泛,近年来我国主要在电厂建筑中推广使用了这种结构,取得不少工程经验和经济效益。现浇混凝土多层框架结构及楼板需满堂红脚手架和满铺模板,而采用组合结构柱、型钢混凝土梁和压型钢板与混凝土组合楼板等足以克服这些缺点,有较好的技术经济效益。由于组合结构有节约钢材、提高混凝土利用系数,降低造价,抗震性能好,施工方便等优点,在各国建设中得到迅速发展。我国对组合结构的研究与应用虽然起步较晚,但发展较快,目前有些已编入规范,有些已编成规程,对推动组合结构在我国的发展起到积极作用。2.组合砌体结构:是由砖砌体和钢筋混凝土面层或钢筋砂浆面层组成的组合砖砌体构件,适用于轴向力偏心距,超过0.7y(y为截面重心到轴向力所在偏心方向截面边缘的距离),或e较大,无筋砌体承载力不足而截面尺寸又受到限制时的情况。

  薄壳结构 壳,是一种曲面构件,主要承受各种作用产生的中面内的力。薄壳结构为曲面的薄壁结构,按曲面生成的形式分筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大多采用钢筋混凝土。壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。实际工程中还可利用对空间曲面的切削与组合,形成造型奇特新颖且能适应各种平面的建筑,但较为费工和费模板。1.筒壳(柱面薄壳):是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。横隔间的距离为壳体的跨度l↓1,侧边构件间距离为壳体的波长l↓2。当l↓1/l↓2≥1时为长壳,l↓1/l↓22<1为短壳。2.圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600,跨度可以很大。支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。3.双曲扁壳(微弯平板):一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高f与底面短边边长之比不应超过1/5。双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。适用于覆盖跨度为20~50米的方形或矩形平面(其长短边之比不宜超过2)的建筑物。4.双曲抛物面壳:一竖向抛物线(母线)沿另一凸向与之相反的抛物线(导线)平行移动所形成的曲面。此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。工程中常见的各种扭壳也为其中一种类型,因其容易制作,稳定性好,容易适应建筑功能和造型需要,故应用较广泛。

  折板结构与幕结构 折板结构是由若干狭长的薄板以一定角度相交连成折线形的空间薄壁体系。跨度不宜超过30米,适宜于长条形平面的屋盖,两端应有通长的墙或圈梁作为折板的支点。常用有V形、梯形等型式。我国常用为预应力混凝土V形折板,具有制作简单、安装方便与节省材料等忧点,最大跨度可达24米。幕结构是双曲薄壳和折板结构的变体所形成的空间薄壁体系,由三角形或梯形薄板整体结合组成。适用于柱距为8~10米的建筑。其型式基本上可分为两种:1.幕结构支承在有柱帽的柱上,柱帽的尺寸为(0.1~0.2)L,柱帽之间有水平板(边梁)相接。2.幕结构支承在无柱帽的柱上,柱帽之间无水平板,只有集中肋形边梁相连。幕结构的矢高取(1/8~1/12)L。其有效矢高可较折板结构和柱形薄壳为小,且可以在两个方向上做成连续的。因此,在工业与民用建筑中采用幕结构屋盖或层间楼盖代替肋形楼盖结构,可以节省很多钢材和水泥。

  网格结构 由很多杆件从两个方向或几个方向按一定的规律布置,通过节点连接而成的一种网状空间杆系结构。外形呈平板状的叫平板网架,简称网架;外形呈曲面状的叫曲面网架,简称网壳。网格结构空间刚度大,整体性和稳定性好,有良好的抗震性能和较好的建筑造型效果,适用于各种支承条件和各种平面形状、大小跨度的工业和民用建筑。由于网格结构具有多向受力性能和内力重分布的持点,可用于地基条件较差而可能出现不均匀沉降的建筑。网格结构杆件和节点比较单一,便于制作,安装也较方便。此种结构主要采用钢材,结构自重轻。缺点是用钢量大;需采取防火及防腐措施;造价较高。

  网架 平板网架平面形状灵活,可设计成各种形状。按腹杆的设置不同可分为:交叉桁架体系、四角锥体系、三角锥体系和其它一些体系。网架的弦杆与边界相垂直时称为正放网架,与边界斜交时称为斜放网架。世界各国在大、中型屋盖中都已成功地建造很多网架结构,例如

加拿大和日本的博览会、美国芝加哥国会大厅及英国伦敦的飞机库等,平面尺寸都很大,总用钢量也比较经济,前苏联还在网架中采用了预应力。总之,网架结构已成为现代世界应用较普遍的新型结构之一。我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。目前主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。跨度越大,采用此种结构的优越性和经济效果也就越显著。

  网壳(曲面网架) 与平板网架相比,网壳的受力性能好,刚度大,自重小,用钢量省,是适用于中、大跨度建筑屋盖的一种较好的结构型式。缺点是曲面外形增加了屋盖表面积和建筑空间,构造处理、支承结构和施工制作均较复杂。从构造上网壳分为单层与双层两大类。单层网壳的跨度不宜超过40米。网壳结构常见型式有圆柱面网壳、圆球网壳和双曲抛物面网壳。1.圆柱面网壳:外形呈圆柱形曲面的网状结构,兼有杆系和壳体结构的受力特点,只在单方向上有曲率,常覆盖矩形平面的建筑。单层网壳按排列有四种:单向斜杆正交正放网格、交叉斜杆正交正放网格、联方网格、三向网格。双层网格可参照平板网架的型式布置不同的网格。壳体高度与波长之比一般在1/6~1/8之间。双层网壳的厚度宜取波长的1/20~1/30。2.圆球网壳:用于覆盖较大跨度的屋盖,常见网格形式有:肋型、施威德肋型、联方网格、短程线型、三向网格。通过对壳面的切割,圆球网壳可以用于多边形、矩形和三角形平面建筑的屋盖。3双曲抛物面网壳:将一直线的两端沿两根在空间倾斜的固定导线(直线或曲线)上平行移动而构成。单层网壳常用直梁作杆件,双层网壳采用直线衍架,两向正交而成双曲抛物面网壳。这种网壳大都用于不对称建筑平面,建筑新颖轻巧。

篇5:住宅结构设计之地基处理

  住宅结构设计之地基处理

  建筑物的地基问题可概括为四个方面:

  1.强度及稳定性问题。地基的抗剪强度不足,地基会产生局部或整体剪切破坏。

  2.压缩及不均匀沉降问题。在上部结构自重及外荷载作用下产生过大变形,影响正常使用或因不均匀沉降使结构开裂破坏。

  3.地基的渗漏量或水力比降超过容许值时,会发生水量损失,或因潜蚀和管涌而可能导致失事。

  4.地震机器以及车辆的振动、波浪作用和爆破等动力荷载可能引起地基土特别是饱和无粘性土的液化、失稳和震陷等危害。当建筑物的天然地基存在上述问题时,即须采用地基处理措施以保证建筑物的安全与正常使用。

  地基问题的处理恰当与否,关系到整个工程质量、投资和进度,因此其重要性日益明显。我国地域辽阔,在各种地基土中,不少为软弱土和不良土,因此新建工程中越来越多地遇到不良地基,地基处理的要求也就越来越迫切和广泛。地基处理的方法很多,大致可分为排水固结法、振密挤密法、置换拌入法、灌浆法、加筋法、冷热处理法、托换技术及其它。可根据不同地基情况进行选用。

  浅基础

  1.墙下条形基础。

  (1)刚性条形基础:是墙基础中常见的形式,通常用砖或毛石砌筑。为保证基础的耐久性,砖的强度等级不能太低,在严寒地区宜用毛石;毛石需用未风化的硬质岩石。砌筑的砂浆,当土质潮湿或有地下水时要用水泥砂浆。刚性基础台阶宽高比及基础砌体材料最低强度等级的要求,有规范规定。

  (2)墙下钢筋混凝土条形基础:当基础宽度较大,若再用刚性基础,则其用料多、自重大,有时还需要增加基础埋深,此时可采用柔性钢筋混凝土条形基础,使宽基浅埋。如果地基不均匀,为增强基础的整体性和抗弯能力,可采用有肋梁的钢筋混凝土条形基础,肋梁内配纵向钢筋和箍筋,以承受由不均匀沉降引起的弯曲应力。

  2.独立基础。是柱基础中最常用和最经济的形式。也可分为刚性基础和钢筋混凝土基础两大类。刚性基础可用砖、毛石或素混凝土,基础台阶高宽比(刚性角)要满足规范规定。一般钢筋混凝土柱下宜用钢筋混凝土基础,以符合柱与基础刚接的假定。

  3.柱下梁式基础。同一排上若干柱子的基础联合在一起,就成为柱下条形基础。此种基础有相当大的抗弯刚度,不易产生太大的挠曲,故基础上各柱下沉较均匀。当土的压缩性或柱荷载分布在两个方向上都很不均匀,为了扩大底面积和加大基础空间刚度以调整不均匀沉降,可在柱网下纵横两个方向设梁,成为柱下交叉梁基础。

  4.筏形基础。用于多层与高层建筑,分平板式和梁板式。由于其整体刚度相当大,能将各个柱子的沉降调整得比较均匀。

  5.箱形基础。由钢筋混凝土底板、顶板和纵横墙体组成的整体结构,其抗弯刚度非常大,只能发生大致均匀的下沉,但要严格避免倾斜。箱形基础是高层建筑广泛采用的基础形式。但其材料用量较大,且为保证箱基刚度要求设置较多的内墙,墙的开洞率也有限制,故箱基作为地下室时,对使用带来一些不便。因此要根据使用要求比较确定。

  深基础 当浅层土质不良,无法满足建筑物对地基变形和强度方面的要求时,可以利用下部坚实土层或岩层作为持力层,采取有效的施工方法建造深基础。

  1.桩基础。由基桩和联接于桩顶的承台共同组成。若桩身全部埋于土中,承台底面与土体接触,则称为低承台桩基;若柱身上部露出地面而承台底位于地面以上,则称为高承台桩基。建筑桩基通常为低承台桩基础。高层建筑中,桩基础应用广泛,其特点为:

  (1)桩支承于坚硬的(基岩、密实的卵砾石层)或较硬的(硬塑粘性土、中密砂等)持力层,具有很高的竖向单桩承载力或群桩承载力,足以承担高层建筑的全部竖向荷载(包括偏心荷载)。

  (2)桩基具有很大的竖向单桩刚度(端承桩)或群刚度(摩擦桩),在自重或相邻荷载影响下,不产生过大的不均匀沉降,并确保建筑物的倾斜不超过允许范围。

  (3)凭借巨大的单桩侧向刚度(大直径桩)或群桩基础的侧向刚度及其整体抗倾覆能力,抵御由于风和地震引起的水平荷载与力矩荷载,保证高层建筑的抗倾覆稳定性。

  (4)桩身穿过可液化土层而支承于稳定的坚实土层或嵌固于基岩,在地震造成浅部土层液化与震陷的情况下,桩基凭靠深部稳固土层仍具有足够的抗压与抗拔承载力,从而确保高层建筑的稳定,且不产生过大的沉陷与倾斜。常用的桩型主要有预制钢筋混凝土桩、预应力钢筋混凝土桩、钻(冲)孔灌注桩、人工挖孔灌注桩、钢管桩等,其适用条件和要求在《建筑桩基技术规范》中均有规定。

  2.沉井基础。沉井是用混凝土(或钢筋混凝土)等建筑材料制成的井筒结构物。施工时,先就地制作第一节井筒,然后用适当的方法在井筒内挖土,使沉井在自重作用下克服阻力而下沉。随着沉井的下沉,逐步加高井筒,沉到设计标高后,在其下端浇筑混凝土封底,如沉井作为地下结构物使用,则在其上端再接筑上部结构;如只作为建筑物基础使用的沉井,常用素混凝土或砂石填充井筒。

  3、地下连续墙。按顺序在土中钻、挖、冲孔成槽,安放钢筋网(笼),浇灌混凝土而逐步形成的墙称为地下连续墙,这种施工工艺开始用作为截水止漏的防渗墙,逐渐演变为新的地下墙体和基础类型。它承担侧壁的土压力和水压力,又起着把上部结构的荷载传递至地基持力层的作用。既可用于高层建筑的多层地下室,又可用于船坞工程和各种地下结构中。

精彩专栏

返回顶部
触屏版 电脑版

© 物业经理人 pmceo.com版权所有