生产 导航

福州建福广场大体积混凝土浇筑技术

编辑:物业经理人2018-12-20

  福州建福广场大体积混凝土浇筑技术

  C40级超厚大体积混凝土浇筑,为避免混凝土产生有害结构裂缝,在原材料选用与配合比设计,混凝土供应与浇筑,混凝土内部温度检测与表面养护等方面采取了有效的措施。

  福州建福广场位于福州市古田路。建筑平面基本上为正方形。地上28层,地下2层。为全现浇外框内筒结构。基础底板总面积约为2300m2(49.2×47.8),其砼总量约为3900m3。整个基础由内核心筒体区域的一个大承台(面积约600m2),周边众多小承台及各承台间的底板组成。底板混凝土厚0.6m,承台处混凝土厚达2.5m,砼设计强度等级为C40。

  基础底板混凝土强度高,厚度和体积大,施工时正值寒冷春季,突出难度如下:

  降低大体积混凝土内部最高温度和控制混凝土内外温度差在规定限值(25℃)以内,存在3个极不利因素:①底板(承台)混凝土超厚,要一次性浇筑,混凝土内部温度不易散发;②混凝土强度等级高,一般需用硅525或硅425水泥,水化热高;③春季施工,环境温度低,混凝土内表温差大。在这些因素综合作用下,混凝土内部必然形成较高的温度,存在着产生裂缝的危险。为防止混凝土产生裂缝(表面裂缝和贯穿裂缝),就必须从降低混凝土温度应力和提高混凝土本身抗拉性能这两方面综合考虑。为此,我们编制了较为完整的施工方案。

  1.C40大体积混凝土配合比设计及试配。

  为降低C40大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。

  1.1.原材料选用。

  1.1.1.水泥:C40大体积混凝土应选用水化热较低的水泥,并尽可能减少水泥用量。本工程选用525号炼石水泥。

  1.1.2.细骨料:宜采用Ⅱ区中砂,因为使用中砂比用细砂,可减少水及水泥的用量。

  1.1.3.粗骨料:在可泵送情况下,选用粒径5-20mm连续级配石子,以减少混凝土收缩变形。

  1.1.4.含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。

  1.1.5.掺合料:应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,并且混凝土的28天强度基本能接近混凝土标准强度值。故本工程采用60天龄期的混凝土强度来代替28天龄期强度,控制温升速率,推移温升峰值出现时间。

  1.1.6.外加剂:采用外加UEA技术。在混凝土中添加约10%的UEA。试验表明在混凝土添加了UEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,这样相应地提高混凝土抗裂强度。

  1.2.试配及施工配合比确定:

  根据试验室配合比设计,每立方米混凝土配合比为525号水泥400kg,连续级配碎石(粒径5—20mm)1060kg,掺合料73kg,外加剂6kg,水170kg,坍落度160—180mm。

  2.温度预测分析:

  根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用3D—TFEP程序对混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,进行保温养护优化选择。根据计算,拟先在混凝土表面铺一层塑料薄膜,中间覆盖1—2层麻袋,上面再铺一层塑料薄膜。

  3.大体积混凝土施工方法:

  3.1混凝土浇筑方案:

  由于承台混凝土厚达到2.5m,内部水化热温升偏高,内表温差和降温速率不易控制,同时考虑基坑支护已有偏移,必须尽快浇筑底板,但商品混凝土供应有问题,故确定混凝土浇捣分三个阶段进行;第一阶段浇捣周边小承台的下层部分(即底板底面高程以下的部分。下同);第二阶段浇捣大承台的下层部分;第三阶段在大中承台的下层部分浇捣后,紧接着从大承台往边扩散,浇捣整个基础的底板部分(包括大小承台的上层部分)。

  3.2.混凝土浇筑:

  为了使混凝土浇筑不出现冷缝,要求前后浇筑混凝土搭接时间控制在5小时内(初凝时间>8小时),因此,混凝土浇筑前经详细计算安排浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间,实施了以下浇筑主案。

  3.2.1.第一阶段:两台混凝土输送泵(另备用2台),10辆罐车,另备用2辆,每个承台独立浇筑。

  3.2.2.第二阶段:自北向南采用斜面分层(分四层)浇筑,用“一个坡度、薄层浇筑,一次到顶”的方法。采用两台输送泵(另备用2台)布料,18辆罐车,另备用5辆。每台输送泵控制范围6m。

  3.2.3.第三阶段:

  3.2.3.1.底板从北向南顺序浇捣,以4轴为界,每台输送泵控制范围6m宽度浇筑前进。

  3.2.3.2.中心承台均覆盖完成后,从D(C)轴中心筒体边缘浇捣至A(I)轴。

  3.2.3.3.余下部分均按每道6m宽度浇筑前进。

  本阶段采用两台输送泵布料(另备用2台),18辆罐车,另备用5辆。

  3.3.混凝土振捣要及时,同时不漏振,但也不能过振,防止离析。

  3.4.混凝土表面处理:

  大体积混凝土表面水泥浆较厚,浇筑后3—4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂,并按规定覆盖养护。

  4.混凝土内部温度监测:

  在核心筒大承台范围垂直埋设9根测杆(编号为A1—I1),另选 2个小承台各埋入1根测杆(编号为A2、B2),每根测杆沿混凝土的厚度设5个测点(如图b示意),合计11根测杆55个混凝土内部温度测点;同时在混凝土外部设置气温测点2个,保温材料温度测点2个及养护水温度测点1个,总计60个工作测点。另设60个备用用测点。所有工作测点都通过热电偶补偿导线与设置在测试房的微机数据采集仪相联接,温度监测数据由采集仪处理后自动打印输出。现场温度监测数据由数据采集仪自动采集并进行整理分析,每隔一小时打印输出一次每个测点的温度值及各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

  5.养护措施:

  5.1.第一阶段施工完毕后,因承台混凝土表面位于底板面层钢筋以下60cm处,无法覆盖保温材料,于是在浇筑后4—5h采取间断浇热水的措施,尽量控制温差。其间出现过温差>25℃,及时采取了措施(水温加高,并用碘钨灯照射),温差控制在25℃内。

  5.2.第二阶段与第三阶段的施工间断

很短,几乎连续浇筑。当第三阶段混凝土浇捣后4—5h内(根据实践表明,在混凝土初凝前及时覆盖,效果更好。),表面抹面后,浇温水保养后,表面及时铺一层塑料薄膜,中间覆盖1—2层麻袋(底板区域1层,承台区域2层),上面再铺一层塑料薄膜进行保温。在养护期间,随时检查混凝土表面的干湿情况及温差(内表温差达23℃时就发警报),及时浇水保持混凝土温润。其间大承台温差大于25℃,采取了灯照和上搭2m高塑料保温棚,将温差控制在25℃内。

  6.健全施工组织管理:

  在制订技术措施和质量控制措施的同时,还落实了组织指挥系统,逐级进行了技术交底,做到层层落实,确保顺利实施。

  7.混凝土的监测结果

  7.1.混凝土浇筑温度为13~21℃,混凝土浇捣及养护期间环境温度日平均为10.1~22.3℃。

  7.2.小承台下层部分:中心混凝土最高温度为60.0℃,面层混凝土最高温度为37.4℃,底层混凝土最高温度为49.2℃。小承台上层部分:中心混凝土最高温度为49.2℃,面层混凝土最高温度为48.4℃。大承台区域:中心混凝土最高温度为70.5℃,面层混凝土最高温度为57.2,底层混凝土最高温度为52.6℃。从监测结果可看出:一般地,混凝土厚度越厚,体积越大,其内部的水化热温度峰值就越高。

  7.3.随着混凝土厚度、体积的增大,其内部热峰值出现龄期也相应延长:小承台上层部分(混凝土厚度为0.6m)中心热峰出现龄期为1天,小承台下层部分(混凝土厚度为1.9m)中心热峰出现龄期约为2天,大承台区域(混凝土厚度为2.5m)中心热峰出现龄期为3~3.5天。

  7.4.小承台的下层部分混凝土浇捣后,因商品混凝土的供应接不上,混凝土施工被迫停了一周时间。在上层部分混凝土浇捣前,由于下层部分临时表面位于基础面层钢筋网下方0.6m处,无法覆盖保温材料,于是采取现场烧热水间歇浇洒的养护措施以提高面层混凝土温度,其内表温差基本被控制在25℃以内。

  7.5.小承台的上层部分混凝土厚度薄(只有0.6m厚),表面又得到很好的保温,因而内表温差极低,基本在10℃以下,最大为13.2℃。

  7.6大承台区域混凝土也分上下两层浇捣,但由于间歇时间极短(只有4~6小时),分层的影响不明显。混凝土浇捣后很重视保温养护工作,在前17天龄期内全区域的内表温差均控制在25℃以内,因养护期间遇阴雨天气,混凝土表面基本处于水养护状态,保湿良好。

  8.施工中应注意的问题:

  8.1.混凝土浇筑不应留冷缝,保证浇筑的交接时间,应控制在初凝前。

  8.2.保证振捣密实,严格控制振捣时间,移动距离和插入深度,严防漏振及过振。

  8.3.及时发出温控警报,做好覆盖保温及保湿工作,但覆盖层也不应过热,必要时应揭开保温层,以利于

  散热。

  8.4.保证混凝土供应,确保不留冷缝。

  8.5.做好现场协调、组织管理,要有充足的人力、物力、保证施工按计划顺利进行。

  9.结束语:

  经现场检查,本基础未发现温度变形裂缝。实践证明,在优化配合比设计,改善施工工艺,提高施工质量,做好温度监测工作及加强养护等方面采取有效技术措施,坚持严谨的施工组织管理,完全可以控制大体积混凝土温度裂缝和施工裂缝的发生,达到良好的自防水抗渗效果。另外,外加剂方面也可以糖类缓凝剂,养护分三个阶段用3种水温养护。

物业经理人网-www.Pmceo.com

篇2:大体积混凝土浇筑技术施工方案

  大体积混凝土浇筑技术施工方案

  基础底板混凝土强度高,厚度和体积大,施工时正值寒冷春季,突出难度如下:

  降低大体积混凝土内部最高温度和控制混凝土内外温度差在规定限值(25℃)以内,存在3个极不利因素:①底板(承台)混凝土超厚,要一次性浇筑,混凝土内部温度不易散发;②混凝土强度等级高,一般需用硅525或硅425水泥,水化热高;③春季施工,环境温度低,混凝土内表温差大。在这些因素综合作用下,混凝土内部必然形成较高的温度,存在着产生裂缝的危险。为防止混凝土产生裂缝(表面裂缝和贯穿裂缝),就必须从降低混凝土温度应力和提高混凝土本身抗拉性能这两方面综合考虑。为此,我们编制了较为完整的施工方案。

  1.C40大体积混凝土配合比设计及试配。

  为降低C40大体积混凝土的最高温度,最主要的措施是降低混凝土的水化热。因此,必须做好混凝土配合比设计及试配工作。

  1.1.原材料选用。

  1.1.1.水泥:C40大体积混凝土应选用水化热较低的水泥(如:矿渣硅酸盐水泥),并尽可能减少水泥用量。

  1.1.2.细骨料:宜采用Ⅱ区中砂,因为使用中砂比用细砂,可减少水及水泥的用量。

  1.1.3.粗骨料:在可泵送情况下,选用粒径5-20mm连续级配石子,以减少混凝土收缩变形。

  1.1.4.含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。

  1.1.5.掺合料:应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,并且混凝土的28天强度基本能接近混凝土标准强度值。故本工程采用60天龄期的混凝土强度来代替28天龄期强度,控制温升速率,推移温升峰值出现时间。

  1.1.6.外加剂:采用外加UEA技术。在混凝土中添加约10%的UEA。试验表明在混凝土添加了UEA之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,这样相应地提高混凝土抗裂强度。

  1.2.试配及施工配合比确定:

  根据试验室配合比设计,每立方米混凝土配合比为525号水泥400kg,连续级配碎石(粒径5—20mm)1060kg,掺合料73kg,外加剂6kg,水170kg,坍落度160—180mm。

  2.温度预测分析:

  根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用3D—TFEP程序对混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,进行保温养护优化选择。根据计算,拟先在混凝土表面铺一层塑料薄膜,中间覆盖1—2层麻袋,上面再铺一层塑料薄膜。

  3.大体积混凝土施工方法:

  3.1混凝土浇筑方案:

  由于承台混凝土厚达到2.5m,内部水化热温升偏高,内表温差和降温速率不易控制,同时考虑基坑支护已有偏移,必须尽快浇筑底板,但商品混凝土供应有问题,故确定混凝土浇捣分三个阶段进行;第一阶段浇捣周边小承台的下层部分(即底板底面高程以下的部分。下同);第二阶段浇捣大承台的下层部分;第三阶段在大中承台的下层部分浇捣后,紧接着从大承台往边扩散,浇捣整个基础的底板部分(包括大小承台的上层部分)。

  3.2.混凝土浇筑:

  为了使混凝土浇筑不出现冷缝,要求前后浇筑混凝土搭接时间控制在5小时内(初凝时间>8小时),因此,混凝土浇筑前经详细计算安排浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间,实施了以下浇筑主案。

  3.2.1.第一阶段:两台混凝土输送泵(另备用2台),10辆罐车,另备用2辆,每个承台独立浇筑。

  3.2.2.第二阶段:自北向南采用斜面分层(分四层)浇筑,用“一个坡度、薄层浇筑,一次到顶”的方法。采用两台输送泵(另备用2台)布料,18辆罐车,另备用5辆。每台输送泵控制范围6m。

  3.2.3.第三阶段:

  3.2.3.1.底板从北向南顺序浇捣,以4轴为界,每台输送泵控制范围6m宽度浇筑前进。

  3.2.3.2.中心承台均覆盖完成后,从D(C)轴中心筒体边缘浇捣至A(I)轴。

  3.2.3.3.余下部分均按每道6m宽度浇筑前进。

  本阶段采用两台输送泵布料(另备用2台),18辆罐车,另备用5辆。

  3.3.混凝土振捣要及时,同时不漏振,但也不能过振,防止离析。

  3.4.混凝土表面处理:

  大体积混凝土表面水泥浆较厚,浇筑后3—4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂,并按规定覆盖养护。

  4.混凝土内部温度监测:

  在核心筒大承台范围垂直埋设9根测杆(编号为A1—I1),另选 2个小承台各埋入1根测杆(编号为A2、B2),每根测杆沿混凝土的厚度设5个测点(如图b示意),合计11根测杆55个混凝土内部温度测点;同时在混凝土外部设置气温测点2个,保温材料温度测点2个及养护水温度测点1个,总计60个工作测点。另设60个备用用测点。所有工作测点都通过热电偶补偿导线与设置在测试房的微机数据采集仪相联接,温度监测数据由采集仪处理后自动打印输出。现场温度监测数据由数据采集仪自动采集并进行整理分析,每隔一小时打印输出一次每个测点的温度值及各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

  5.养护措施:

  5.1.第一阶段施工完毕后,因承台混凝土表面位于底板面层钢筋以下60cm处,无法覆盖保温材料,于是在浇筑后4—5h采取间断浇热水的措施,尽量控制温差。其间出现过温差>25℃,及时采取了措施(水温加高,并用碘钨灯照射),温差控制在25℃内。

  5.2.第二阶段与第三阶段的施工间断很短,几乎连续浇筑。当第三阶段混凝土浇捣后4—5h内(根据实践表明,在混凝土初凝前及时覆盖,效果更好。),表面抹面后,浇温水保养后,表面及时铺一层塑料薄膜,中间覆盖1—2层麻袋(底板区域1层,承台区域2层),上面再铺一层塑料薄膜进行保温。在养护期间,随时检查混凝土表面的干湿情况及温差(内表温差达23℃时就发警报),及时浇水保持混凝土温润。其间大承台温差大于25℃,采取了灯照和上搭2m高塑料保温棚,将温差控制在25℃内。

  6.健全施工组织管理:

  在制订技术措施和质量控制措施的同时,还落实了组织指挥系统,逐级进行

了技术交底,做到层层落实,确保顺利实施。

  7.混凝土的监测结果

  7.1.混凝土浇筑温度为13~21℃,混凝土浇捣及养护期间环境温度日平均为10.1~22.3℃。

  7.2.小承台下层部分:中心混凝土最高温度为60.0℃,面层混凝土最高温度为37.4℃,底层混凝土最高温度为49.2℃。小承台上层部分:中心混凝土最高温度为49.2℃,面层混凝土最高温度为48.4℃。大承台区域:中心混凝土最高温度为70.5℃,面层混凝土最高温度为57.2,底层混凝土最高温度为52.6℃。从监测结果可看出:一般地,混凝土厚度越厚,体积越大,其内部的水化热温度峰值就越高。

  7.3.随着混凝土厚度、体积的增大,其内部热峰值出现龄期也相应延长:小承台上层部分(混凝土厚度为0.6m)中心热峰出现龄期为1天,小承台下层部分(混凝土厚度为1.9m)中心热峰出现龄期约为2天,大承台区域(混凝土厚度为2.5m)中心热峰出现龄期为3~3.5天。

  7.4.小承台的下层部分混凝土浇捣后,因商品混凝土的供应接不上,混凝土施工被迫停了一周时间。在上层部分混凝土浇捣前,由于下层部分临时表面位于基础面层钢筋网下方0.6m处,无法覆盖保温材料,于是采取现场烧热水间歇浇洒的养护措施以提高面层混凝土温度,其内表温差基本被控制在25℃以内。

  7.5.小承台的上层部分混凝土厚度薄(只有0.6m厚),表面又得到很好的保温,因而内表温差极低,基本在10℃以下,最大为13.2℃。

  7.6大承台区域混凝土也分上下两层浇捣,但由于间歇时间极短(只有4~6小时),分层的影响不明显。混凝土浇捣后很重视保温养护工作,在前17天龄期内全区域的内表温差均控制在25℃以内,因养护期间遇阴雨天气,混凝土表面基本处于水养护状态,保湿良好。

  8.施工中应注意的问题:

  8.1.混凝土浇筑不应留冷缝,保证浇筑的交接时间,应控制在初凝前。

  8.2.保证振捣密实,严格控制振捣时间,移动距离和插入深度,严防漏振及过振。

  8.3.及时发出温控警报,做好覆盖保温及保湿工作,但覆盖层也不应过热,必要时应揭开保温层,以利于

  散热。

  8.4.保证混凝土供应,确保不留冷缝。

  8.5.做好现场协调、组织管理,要有充足的人力、物力、保证施工按计划顺利进行。

  9.结束语:

  经现场检查,本基础未发现温度变形裂缝。实践证明,在优化配合比设计,改善施工工艺,提高施工质量,做好温度监测工作及加强养护等方面采取有效技术措施,坚持严谨的施工组织管理,完全可以控制大体积混凝土温度裂缝和施工裂缝的发生,达到良好的自防水抗渗效果。另外,外加剂方面也可以糖类缓凝剂,养护分三个阶段用3种水温养护。

篇3:底板大体积混凝土浇筑

  底板大体积混凝土浇筑

  1 浇筑施工工艺流程

  布置混凝土汽车泵→混凝土供货验收→开机、泵送砂浆、润管→浇筑第一区第一层混凝土→振捣→作业面推进→浇筑第二区第一层混凝土→振捣→返回混凝土第一区第二层混凝土→振捣循环作业混凝土表面第一次赶平、压实、抹光→混凝土表面二次赶平、压实、抹光→混凝土及时覆盖保温保湿养护→混凝土测温监控

  2 混凝土浇筑顺序

  本工程两栋楼的浇筑顺序:10号楼由西向东,11号楼由东向西浇筑。

  每栋楼采用两个振捣小分队,每个小分队分为6 路向前推进,首泵料分别投放在起始浇筑的基础底板大角,基础底板混凝土浇筑顺序图如图7-1 所示。

  考虑泵送混凝土坍落度大,当混凝土浇筑至电梯井坑相邻轴跨时,电梯深坑底板混凝土先下料浇筑。

  根据现场交通环境,安排泵车停靠位置的方案图如基础泵送方案图如图7-2 所示。

  3 浇筑方法

  采用一次性连续浇捣方案,分三层浇筑,每层约550mm 厚左右,分层厚度标志在底板钢筋马凳腿上刷红色漆。底板振捣采用斜坡式分层振捣,斜面由泵送混凝土自然流淌而成,坡度控制在1:3 左右,振捣工作从浇筑层的底层开始逐渐上移,以保证分层混凝土间的施工质量。

  混凝土在振捣过程中宜将振动棒上下略有抽动,使上下混凝土振动均匀每次振捣时间以20~30为宜(混凝土表面不再出现气泡、泛出灰浆为准),振捣时,要尽量避免碰撞钢筋,管道预埋件等。振捣棒插点采用行列式的次序移动,每次移动距离不超过混凝土振捣棒的有效作用半径的1.25 倍,一般振动棒的作用半径为30~40cm 。振捣操作要"快插慢拔"防止混凝土内部振捣不实;要" 先振低处,后振高处", 防止高低坡面处混凝土出现振捣"松顶"现象。混凝土的斜面分层水平方向错开距离大于4m, 混凝土浇筑的斜面分层如图7-3 所示:

  图7-1 基础底板混凝土浇筑顺序

  图7-2 泵车停靠位置的方案图

  图7-3 混凝土浇筑的斜面分层示意图

  3.1 外墙底板上30cm 高导墙

  外墙根部的施工缝在底板上30cm 处, 该部位有固定模板的钢管,有剪力墙定位梯子筋,并设置了钢板止水带,混凝土下料不能直接将泵送混凝土倾入模板中央,振捣必须慢速、细致的操作。

  3.2 人防出口处混凝土浇筑

  人防出口处有橡胶止水带及其固定钢筋箍,混凝土下料倾倒注意避免冲移止水带,振捣时振动棒不得直接接触止水带。

  3.3 电梯深坑浇筑 电梯深坑的底板混凝土应先下料振捣,待坑壁混凝土浇筑时,底部不致返浆,振捣操作应分层振捣,分层厚度0.5cm。电梯井深坑在混凝土浇筑过程中,容易出现井筒移位、跑模的质量病,为防止模板移位,除支模时采用外顶内撑的固定方式支模,一定要注意在井筒模周边对称下料,对称振捣,禁止一侧混凝土一次浇筑到顶。

  3.4 框架柱根部

  应是混凝土下料振捣密实的重点部位,操作工应防止漏振、欠振;

  4 钢筋防止移位措施

  采取定点下料,对称振捣的措施防止混凝土将钢筋推离设计位置。底板上剪力墙及柱插筋采用定位箍控制竖向筋的间距,竖筋外套PVC 管防止水泥浆污染,浇筑现场安排专人看护。

  5 泌水处理

  大体积混凝土浇筑、振捣过程中,容易产生泌水现象,泌水现象严重时,可能影响相应部分的混凝土强度指标。为此必须采取措施,消除和排除泌水。一般情况下上涌的泌水和浮浆会顺着混凝土浇筑坡面下流到坑底。施工中根据施工流水,大部分泌水可排到集水坑和电梯井坑内,然后用潜水泵抽排掉,局部少量泌水采用海绵吸除处理。

  6 表面防裂施工技术要点

  大体积泵送混凝土经振捣后表面水泥浆较厚,容易引起表面裂缝,首先,要求在振捣最上一层混凝土时,控制振捣时间,注意避免表层产生太厚的浮浆层;在浇捣后,必须及时用2m 长括尺,将多余浮浆层刮除,按施工员测设的标高控制点,将混凝土表面括拍平整。有凹坑的部位必须用混凝土填平,在混凝土收浆接近初凝时,混凝土面进行二次抹光,用木蟹全面仔细打抹两遍,既要确保混凝土的平整度,又要把其初期表面的收缩脱水细缝闭合,在混凝土收浆凝固施工期间,除了具体施工人员外,不得在未干硬的混凝土面上随意行走,收浆工作完成的面必须同步及时覆盖表面养护保护层。

篇4:大体积混凝土浇筑

  大体积混凝土浇筑

  泵站地下部分为大体积混凝土结构,混凝土量为14100m3。按防水要求,底板和墙要一次连续浇筑完成。混凝土量大,强度等级高,需用大量搅拌、运输设备和劳动力,不利于流水作业。特别是混凝土的水化热高,浇灌时间可能在7~9月高温季节进行,对混凝土防裂不利。混凝土的水化热绝热温升值一般可按下式计算。

  T(t)=

  式中T(t)--浇完一段时间t,混凝土的绝热温升值(℃);

  W--每m3混凝土水泥用量(kg/m3);

  Q--每kg水泥水化热量(kJ/kg);

  C--混凝土的比热,一般取0.96(kJ/kg·℃);

  ρ--混凝土密度,取2400kg/m3;

  m--与水泥品种,浇筑时温度有关的经验系数,一般为0.2~0.4;

  t--龄期(d)。

  按本工程W= 280kg/m3,Q=335kJ/kg,则混凝土的最高水化热绝热温度为:

  Tma*= (℃)

  再加上浇筑入模温度(约25℃)很高,如不采取技术措施,很可能出现温度裂缝,造成事故。为降低混凝土浇筑温度和水泥水化热温度,结合本工程特点和施工条件,应采取以下几项技术措施:

  (1)分段分层浇筑,沿长度方向分为二段,中间留后浇缝(图5-103)。底板、墙壁和顶部梁板又分三次浇筑,待两段浇完后,间隔4周,再用细石混凝土浇后浇缝,以利流水作业,减少一次混凝土浇灌量和搅拌运输设备,削减温度应力。

  (2)采用水化热低的42号矿渣水泥和粒径5~6cm的石子配制混凝土,在混凝土中掺加粉煤灰(55 kg/m3)和2%的木钙减水剂,降低水泥用量和水化热量。在底板和墙混凝土中掺加10%~15%的毛石吸热,并节省混凝土。配备专人下石,做到分散均匀。

  (3)气温高于25℃时,石子洒水,砂覆盖苇席降温。在水中适当加入冰屑和冰水,降低水温和混凝土浇灌入模温度。

  (4)混凝土采取薄层浇筑,每层厚度不大于30cm。浇筑时,在基坑内设4台轴流通风机,以加速热量散发。

  (5)加强混凝土养护和保温,底板采取在后浇缝一侧砌二皮砖灌水养护,墙壁挂草垫,上表面覆盖两层草袋,设专人及时浇水养护,时间不少于28d。在泵房三侧及时回填土,做排水层保温,提高早期强度,以利防裂。

  (6)加强混凝土的测温工作,及时分析,控制混凝土内外温差在20℃以内。如发现温差过大,应及时采取保温或回填等措施进行处理。

  (7)避免降温与干缩共同作用,在混凝土墙壁拆模养护后,随即在三侧回填土,使地下水位上升2/3全高,使整个泵站地下部分保持湿润状态,预防在降温最危险期混凝土产生过大的脱水干缩和温度变化造成应力累加,在后期出现裂缝。

  混凝土搅拌能力设置,按底板混凝土浇灌强度确定。混凝土初凝时间按4h考虑,每层浇筑厚度取0.3m,则每班(8h)的混凝土搅拌能力应为24.1×28.5×0.3×8/4=412m3。在搅拌站设置J3-1500型搅拌机1台,班产量为160m3,J1-800型搅拌机3台,班产量为85×3=255 m3,总产量为415 m3,可以满足要求。混凝土采用3.5t翻斗汽车运输,运距1km,每小时5趟,每班按8h计,可运56 m3,需要汽车412/56=7.4台,考虑备用,采用10台。

  混凝土浇筑根据不同部位采用三种方式进行:

  (1)基础底板混凝土用翻斗汽车运到现场后,直接倾入吊斗内,用1台塔吊,2台履带吊吊混凝土吊斗作为分布浇灌。另在基坑端部及两侧设溜槽,坡度为45°~60°,翻斗汽车直接将混凝土倾入料斗,流入溜槽,通过活动平台的漏斗、串筒下到基础坑作分布浇灌,在平台上铺以人工扒料。

  (2)墙壁浇灌在顶部利用钢支护作支架,设置活动平台4个下吊串筒,用塔吊吊混凝土吊斗浇灌,浇完一处再将活动浇灌平台吊至下一部位,同法浇灌。三侧墙下部辅以混凝土溜槽,用汽车直接倾料浇灌(图5-102)。

  (3)顶部梁板用塔吊、履带吊车直接吊混凝土吊斗浇灌。

精彩专栏

返回顶部
触屏版 电脑版

© 物业经理人 pmceo.com版权所有